SESTSUIPSE

A ST Y

Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS

All-Pairs Shortest Paths

the problem of finding shortest paths between all pairs of vertices in a graph.

Problem

we are given a weighted, directed graph G = (V, E)
with a weight function w : E — R that maps edges to real-valued weights.

We wish to find, for every pair of vertices u, v € V, a shortest (least-
weight) path from u to v, where the weight of a path is the sum of the
weights of its constituent edges.

We typically want the output in tabular form:

the entry in u’s row and v’s column should be the weight of a shortest
path from u to v.

Solve by SSP
(Bellman-Ford an Dijkstra’s algorithm)

We can solve an all-pairs shortest-paths problem by running a single-
source shortest-paths algorithm | V| times, once for each vertex as the
source.

* If all edge weights are nonnegative
e we can use Dijkstra’s algorithm.
e min-priority queue : the running time is O(V3 + V E) = 0(V3).
* binary min-heap : the running time of O(V E 1gV),
* Fibonacci heap : the running time of 0(V2lgV + V E).
* If negative-weight edges are allowed

e we must run the slower Bellman-Ford algorithm
* The resulting running time is O (V2E),

* Unlike the single-source algorithms, which assume an adjacency-list
representation of the graph, most of the algorithms in this topic (All-

Pairs Shortest Paths) use an adjacency-matrix representation.

* (Johnson’s algorithm for sparse graphs uses adjacency lists.)

Assumption

we assume that the vertices are numbered 1, 2,..., |V|, so that

the inputisann X n matrix W = (w;;) representing the edge
weights of an n-vertex directed graph ¢ = (V, E).

‘W =
0 ifi = j,
* the weight of directed edge (i,j) ifi = jand (i,j) € E,
coifi = jand(i,j) € E.

Qutput: D and Il

* The tabular output of the all-pairs shortest-paths algorithms presented in this
chapterisann X nmatrix D = (d;;),

* where entry d;; contains the weight of a shortest path from vertex i to vertex j .
* If we let 6(I,j) denote the shortest path weight from vertex i to vertex j, then

dij = O(L,]) at termination.

* To solve the all-pairs shortest-paths problem on an input adjacency matrix, we
need to compute not only the shortest-path weights but also a predecessor
matrix 11 = (r;;), where

* m;jis NIL if either i = j or there is no path from i to j, and otherwise
* 1;j is the predecessor of j on some shortest path from i.

Print a path

PRINT-ALL-PAIRS-SHORTEST-PATH(IL, i,)

1ifi = §

2 then print i

3 elseif;; = NIL

4 then print no path from i to j exists

5 else PRINT-ALL-PAIRS-SHORTEST-PATH(II, i, rt;;)
6 print j

the all-pairs shortest-paths problem

a dynamic-programming algorithm based on matrix multiplication

the steps of a dynamic-programming algorithm

1.

2.
3.
4

Characterize the structure of an optimal solution.
Recursively define the value of an optimal solution.

Compute the value of an optimal solution in a bottom-up fashion.
Construct an optimal solution from computed information.

11

The structure of a shortest path

 All subpaths of a shortest path are shortest paths

* Consider a shortest path p from vertex i to vertex j , and suppose
that p contains at most m edges.

* Assuming that there are no negative-weight cycles, m is finite.
*|Ifi = j,then p has weight 0 and no edges.
* If vertices i and j are distinct, then we decompose path p into
i~k — |
* p’ is a shortest path fromito k,andso 8(i,j) = 6(i,k) + wy; . (p’
now contains at most m — 1 edges)

the steps of a dynamic-programming algorithm

1.

2.
3.
4

Characterize the structure of an optimal solution.
Recursively define the value of an optimal solution.

Compute the value of an optimal solution in a bottom-up fashion.
Construct an optimal solution from computed information.

13

A recursive solution to the all-pairs shortest-paths
base

O _ 0 1ifti=7,
oo oo ifi £

14

A recursive solution to the all-pairs shortest-paths
recursion

(m) . (m—1) (m—1)
[min (ll-j- , min {1 + wy, })

min {1,-(1."_1 + wy; |

1<k<n

1<A<n

15

the steps of a dynamic-programming algorithm

3. Compute the value of an optimal solution in a bottom-up fashion.

Computing the shortest-path weights bottom up
extend path

oS dowlxo ;M Job 4 b o (1 yi2leS M-1 Job) b yucro (3 ;520 o5 51 oolisiw! L
EXTEND-SHORTEST-PATHS (L, W)
n < rows[L]
let L' = (/,’-'_,-) be an n X n matrix
fori < 1 ton
do for j < 1 ton
do [;; < o0
for k < 1 ton
do /;; < min(/};, lix + wg;)

0 ON DN & W N =

return L’

17

Computing the shortest-path weights bottom up

EXTEND-SHORTEST-PATHS (L, W) jm=-n 5 4 ,
n < rows[L] w — b,
let lj/ — (lfj-) be an n x n matrix o .
fori < 1ton .
do for j < 1ton Il = T
—

fork < 1ton

]

2

o

4

5 do]}'j- <«— OO -
6

7 do]i/j <— min(/fj, lik + wyj)
8

return L’

18

extending shortest paths edge by edge

Fihtl o L(O),W - W,
L@ = LO.w = w2,
LO® = L@.w = W3,
L(n—l) — L(11—2.).W — Wn—l

19

All-Pairs Shortest Paths algorithm

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

1n < rows|W]

2LD « W

3form « 2ton — 1

4 Do L) « EXTEND-SHORTEST-PATHS(L(™=1) W)
S5return L(n — 1)

Time complexity of computing L™V : @(nt)

20

Improving the running time

L(l) — 11,%

LO = w2 = W.W,

L(4) — W4 — W2) W2

L(S) — WS _ W4) W4
L(zflg(n—l)]) . zl'lg(n—lﬂ . Wz[lg(n—l)]—l

A [lg(n—1)]—1

W2

21

O (n’ lgn) algorithm
with technique of repeated squaring.

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)

1 n < rows|W]

2 LWe W

3m e« 1

4 whilem < n — 1

5 doL(®™ « EXTEND-SHORTEST-PATHS(L(™), L(™)
6 m < 2m

7 return L(™

22

example

23

To88°
g~ 8°
A

7 (1)

24

4
7
11
2
0

2
I
S
0
6

25

11

S
—2

0

0
—5

—1

26

—4

—1

1

0

—3 2

—4

1

27

Sample problem:

* Modify FASTER-ALL-PAIRS-SHORTEST-PATHS so that it can detect the
presence of a negative-weight cycle.

* Give an efficient algorithm to find the length (number of edges) of a
minimum length negative-weight cycle in a graph.

